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Abstract

Sequencing reduced‐representation libraries of restriction site‐associated DNA (RAD-

seq) to identify single nucleotide polymorphisms (SNPs) is quickly becoming a standard

methodology for molecular ecologists. Because of the scale of RADseq data sets, puta-

tive loci cannot be assessed individually, making the process of filtering noise and cor-

rectly identifying biologically meaningful signal more difficult. Artefacts introduced

during library preparation and/or bioinformatic processing of SNP data can create pat-

terns that are incorrectly interpreted as indicative of population structure or natural

selection. Therefore, it is crucial to carefully consider types of errors that may be intro-

duced during laboratory work and data processing, and how to minimize, detect and

remove these errors. Here, we discuss issues inherent to RADseq methodologies that

can result in artefacts during library preparation and locus reconstruction resulting in

erroneous SNP calls and, ultimately, genotyping error. Further, we describe steps that

can be implemented to create a rigorously filtered data set consisting of markers accu-

rately representing independent loci and compare the effect of different combinations

of filters on four RAD data sets. At last, we stress the importance of publishing raw

sequence data along with final filtered data sets in addition to detailed documentation

of filtering steps and quality control measures.
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1 | THE RISE OF RAD

Advances in sequencing technology coupled with increases in com-

putational power have resulted in a shift towards genome‐scale data

analysis, for which data sets typically consist of thousands to tens of

thousands of loci. At the same time, bioinformatic pipelines have

become more user‐friendly and accessible to scientists without

extensive backgrounds in bioinformatics or programming. As a result,

new analytical methods are rapidly being developed for studies

assessing levels of population structure and genomic diversity, iden-

tifying and mapping quantitative trait loci (QTL), and screening for

FST outliers putatively indicative of selection; increasingly, restriction

site‐associated DNA sequencing (RADseq)‐derived single nucleotide

polymorphisms (SNPs) are becoming the molecular marker of choice.

RADseq methods are time‐ and cost‐efficient techniques that utilize

restriction enzymes to generate DNA fragments from which thou-

sands of SNPs can be identified using next‐generation sequencing.

This set of methods does not require a fully sequenced reference

genome as loci can be reconstructed de novo from sequencing

reads, greatly widening the types of organisms that can be studied

beyond traditional model species (Baird et al., 2008; Davey & Blax-

ter, 2010; Miller, Dunham, Amores, Cresko, & Johnson, 2007). In
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addition to the original RADseq protocol (Miller et al., 2007), ddRAD

(Peterson, Weber, Kay, Fisher, & Hoekstra, 2012), ezRAD (Toonen et

al., 2013) and 2b‐RAD (Wang, Meyer, McKay, & Matz, 2012) are

commonly applied techniques. Despite differences between RADseq

techniques and more traditional approaches, typically limited to data

sets consisting of mitochondrial and/or nuclear loci (e.g., 10–100
microsatellite loci), all are unified by the assumption that the final

data set consists of markers that each represents a single locus and

that these loci are unlinked (freely recombining), a condition that

must be met when allele and genotype frequencies are being used

to infer biological processes.

Recent reviews have summarized differences between individual

RADseq techniques, compared their respective advantages and dis-

advantages and pointed out some potential sources of genotyping

error that can lead to biased data sets (Andrews et al., 2014; Puritz,

Hollenbeck, & Gold, 2014; Puritz, Matz, et al., 2014). More effort,

however, is required to establish widely accepted protocols to detect

and remove putative markers that in reality do not represent single

loci, identify and correct erroneous SNP calls, and assess genotyping

error (but see Ilut, Nydam, & Hare, 2014; Li & Wren, 2014; Mas-

tretta‐Yanes et al., 2015). For other commonly used molecular mark-

ers such as AFLPs and microsatellites, sources of genotyping error

(i.e. allelic dropout, null alleles, stuttering) and best practices to effi-

ciently detect and correct for them are well established (Bonin et al.,

2004), and standards of reporting regarding data quality control have

been formalized. At present, published RADseq studies report (and

practice) a wide array of data filtering and error detection proce-

dures after variant calling, but many publications underreport quality

control methods, making it difficult for the reader to assess data

quality.

Generating SNP data sets using RADseq approaches involves

three general steps: library preparation, bioinformatic processing,

and filtering for data quality. It is important to realize that error

potentially resulting in artefacts downstream can be introduced at

any of these steps. The introduction of some error during technical

stages is unavoidable; therefore, it is important to employ quality

control steps that allow for the identification and reduction in error

before the data set is analysed. Here, we briefly review and make

recommendations on how to limit and detect common sources of

technical artefacts during library preparation and bioinformatic pro-

cessing and suggest a set of filtering strategies that can be

employed to create a robust data set consisting of markers repre-

senting physically unlinked, correctly reconstructed loci (Table 1).

Further, we apply different combinations of suggested filters to

several RAD data sets and discuss the effectiveness of different fil-

tering strategies.

2 | MINIMIZING ARTEFACTS ASSOCIATED
WITH LIBRARY PREPARATION

The goal of library preparation for a typical RADseq experiment is to

consistently sample the same set of fragments with sufficient

coverage to correctly identify all alleles present at each locus across

all individuals within and across sequencing runs. In this context, “li-
brary” refers to a set of RADseq fragments isolated from a given

number of individuals that are barcoded and sequenced together on

a single lane. Common technical artefacts introduced during library

preparation include (a) coverage effects, (b) locus drop‐in/dropout, (c)
PCR artefacts and (d) library effects. Another common artefact, allele

dropout, causes alleles to systematically remain unsampled due to

physical properties of the genome, that is cut‐site or length polymor-

phisms. Because allele dropout has a biological origin, it should be

considered a biological artefact that cannot be technically mitigated

but rather can only be managed during bioinformatic processing (dis-

cussed in detail in Section 4.3). In contrast, technical artefacts are

associated with technical choices made by researchers and thus can

be limited by careful planning during library preparation, as discussed

below.

2.1 | Coverage effects: DNA quality, quantity and
restriction digestion

RADseq methods, with the possible exception of recently devel-

oped hybrid enrichment methods (Schmid et al., 2017; Suchan et

al., 2016), require high‐molecular‐weight DNA to ensure consistent

digestion using restriction enzymes. Compared to other molecular

markers, RADseq protocols also require greater amounts of DNA

(up to 500 ng), and while there is some flexibility in how much

DNA is used, lower starting amounts of DNA increase the risks of

low‐quality data. Inconsistent digestions can be due to partially

degraded DNA, inhibitors present in the reaction (usually left over

from extraction) and star activity of the enzymes (i.e., cleavage of

noncanonical recognition sequences). This is problematic because

inconsistent recovery of all fragments produces downstream vari-

ance in coverage and/or missing data among loci within and

between libraries (Graham et al., 2015). To help ensure consistent

digestions, researchers should use high‐fidelity versions of restric-

tion enzymes and perform trial digestions to determine adequate

concentrations and sufficient digestion times. Quality control mea-

sures such as running digested samples on a fragment analyser or

agarose gel can be implemented to compare digestion results. Unit

definitions for enzymes and standard protocols are generally based

on the digestion of purified λ‐phage DNA; therefore, it is often

advisable to use more enzymes than manufacturer's guidelines sug-

gest. In addition, purifying genomic DNA before digestion can

remove inhibitors (e.g., phenol or pigments) carried over from

extraction.

When read depth per locus per individual (hereafter “coverage”)
is insufficient, alleles may not be detected. Coverage effects may

occur when initial DNA quality differs among individuals or standard-

ization of the amount of DNA prior to pooling is inconsistent, result-

ing in an unequal distribution of sequenced reads among individuals

and loci. The use of high‐sensitivity quantification kits and standard-

ization of DNA quantity prior to enzyme digestion and again prior to

adapter ligation can help to mitigate this issue. In the same way,
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pooling too many individuals on a sequencing lane can result in sys-

tematic low read depth across all samples and loci. This can be

avoided by reducing the number of individuals per sequencing lane

or by adjusting the size selection window and enzymes used to

decrease the number of targeted fragments. For loci affected by

coverage effects, false homozygote calls will result in biased allele

frequency estimates, which may cause genomic diversity to be

underestimated, FST, and effective population size to be incorrectly

estimated, and an increase in false positives/negatives in FST‐outlier
tests (Arnold, Corbett‐Detig, Hartl, & Bomblies, 2013; Gautier et al.,

2012).

2.2 | Locus drop‐in/dropout due to size selection

Size selection is a crucial step to ensure consistent sampling of the

same set of fragments across ddRAD libraries. The magnitude of the

variance in the distribution of fragment lengths between libraries is

dependent on the method used for size selection (Puritz, Hollenbeck,

& Gold, 2015). Two commonly employed methods are manual gel

cutting and automated size selection (e.g., Pippin Prep) . While the

latter is expected to increase the accuracy and precision of size

selection, there can still be inconsistencies caused by factors includ-

ing the salt concentration of the loaded samples and variable ambi-

ent laboratory temperature that can result in changes in the size

distribution of eluted fragments. Size selection anomalies can there-

fore result in fragments dropping in or out of the targeted size win-

dow for individually prepared libraries. To ensure consistent

fragment recovery, it is important to make sure that both means and

variances the mean and variance of fragment size distributions are

similar across runs. Because small fragments may be amplified pref-

erentially, libraries with wider variances may have suboptimal cover-

age for larger fragments as compared to libraries with less variance

even if the mean fragment size is comparable. Thus, it is important

to implement quality control steps to determine whether the

selected fragments fall into the expected distribution given the tar-

geted size window. For example, a fragment analyser or high‐resolu-
tion electrophoresis gel can be used to determine the actual length

of the fragments retained in each library prior to sequencing.

TABLE 1 Overview of described potential issues in raw RAD data sets, their causes and strategies for technical and bioinformatic mitigation

Issue Potential causes Technical mitigation Bioinformatic mitigation

Inconsistent

sequencing of loci
• Low-quality genomic DNA

• Inconsistent digestions

• Locus drop-in/dropout during size

selection

• Consistent digestion across samples

• Precise pooling of samples

• Quality control size selection

• Genotype call rate/missing data

filters

• Mean minimum depth filter

Coverage effects

(false homozygotes)
• Read depth too low to successfully

recover both alleles

• Choose enzyme combination,

fragment size and number of

individuals based on desired read

depth per locus & individual

• Depth filters (genotype,

mean/variance per locus)

• Excess homozygosity filter

Null alleles (false

homozygotes)
• Length/size polymorphism results in

nonamplification of allele

• Biological origin: effect cannot be

minimized

• Excess homozygosity filter

• Depth filters (genotype,

mean/variance per locus

• Difficult to distinguish from

coverage effects (difficult to account

for)

Clustering error

(artifactual contigs)
• Oversplit or overclustering during de

novo locus assembly

• Test range of parameters to identify

best value for percentage similarity

to split

• Choose conservative threshold (risk

overclustering to avoid oversplitting)

• Oversplit loci cannot be efficiently

detected and removed

• Identify overclustered loci based on:
o Excess depth

o Excess heterozygosity

o Haplotyping

Artifactual SNPs

(false heterozygotes)
• PCR artefacts

• Sequencing error

• Read mapping

• High-fidelity polymerase

• Minimize PCR cycles

• Incorporating adapters with random

nucleotides for duplicate

identification

• Mapping quality ratio

• Allele balance

• Strand bias

• Properly paired reads

• Locus quality/depth ratio

Library effects Differences between libraries:

• Size selection

• Coverage

• Sequencing lanes/machines

• Randomize samples to decouple

signal

• Technical replicates

• Identify and remove affected loci

using PCA/DAPC

• Ensure loci consistently amplified

between libraries

Linkage • Multiple SNPs on same contig

• Fragments physically linked

• Biological origin: cannot be

minimized

• SNP thinning

• Haplotyping

• Test for linkage

disequilibrium
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2.3 | PCR artefacts

With the exception of proposed PCR‐free protocols (e.g., ezRAD;

Toonen et al., 2013) and protocols performing PCR before size

selection (Elshire et al., 2011), the final step of library preparation is

PCR amplification, during which artefacts may also be introduced.

These can be classified as (a) PCR error, including PCR chimeras,

heteroduplexes and Taq polymerase error that could be exponen-

tially propagated during PCR cycling, and (b) PCR bias, the preferen-

tial amplification of shorter fragments and those with higher GC

content. PCR artefacts can be minimized by using high‐fidelity poly-

merase and high annealing temperatures to limit copy error, reducing

the number of cycles to minimize PCR bias and providing sufficient

extension time based on fragment size. In addition, several authors

have recommended the incorporation of barcodes with degenerate

bases to aid in detection and removal of PCR duplicates (Schweyen,

Rozenberg, & Leese, 2014; Tin, Rheindt, Cros, & Mikheyev, 2015),

that is reads stemming from the same fragment template, which arti-

ficially increase read depth and therefore increase confidence in a

SNP call despite not actually representing independent observations.

At last, multiple reactions can be completed with fewer cycles and

combined into a final product to further mitigate PCR error and bias.

2.4 | Library effects

One of the principal benefits of reduced‐representation sequencing

techniques is the reproducibility of the library preparation process.

In theory, repeating the process with the same restriction enzymes

and size selection window should consistently yield the same set of

fragments. In practice, however, subtle differences between experi-

ments, frequently beyond the control of the researcher, can result in

a situation where different sets of fragments are sequenced and/or

coverage differs greatly among libraries (“library effects”). Library

effects can be caused by a number of factors including differences

in reagents and protocols used, ambient laboratory temperature,

poor accuracy and/or precision of size selection, and differences in

DNA pool quality and/or concentration (Bonin et al., 2004). While

not all library effects can be avoided, measures can be implemented

to reduce the impact of library effects and identify the most severely

affected markers.

The most effective ways to decouple the putative biological sig-

nal from patterns introduced by library effects are by (a) randomly

allocating individuals from different treatments or geographic locali-

ties across libraries and (b) including technical replicates (repeated

samples) across libraries (Meirmans, 2015). Randomizing samples

across libraries broadly diminishes the chances that artifactual signal

will be confused as a biologically meaningful pattern, while also

allowing for downstream identification and removal of library effects.

By performing a PCA, or similar analysis, with data grouped by

library and identifying and examining those markers most associated

with axes discriminating libraries, library effects can be mediated by

removing biased loci (Figure 1). When studies incorporate multiple

libraries prepared at different times and under different conditions

and sequenced on multiple lanes, including a subset of individuals

across libraries (“technical replicates”) should be standard practice.

Incorporating these technical replicates enables a direct comparison

of genotypes across libraries, allowing for the identification of loci

that are consistently sampled with sufficient coverage to identify

both alleles and loci exhibiting systematic genotyping errors. Imple-

menting the randomization of individuals and including the technical

replicates during the library preparation stage are crucial for identify-

ing library effects during bioinformatic processing and data filtering.

3 | MINIMIZING ARTEFACTS ASSOCIATED
WITH BIOINFORMATICS

During bioinformatic processing of RADseq data in the absence of a

fully sequenced and assembled genome, reads are first clustered into

contigs (contiguous sequence alignments) with the goal that each

contig should represent a single locus. Second, reads are clustered or

aligned at each reconstructed locus to identify and call SNPs for

each individual. Artefacts most commonly introduced at this stage

are (a) clustering errors, that is the chosen values for the parameters

of the clustering algorithm result in undersplitting or oversplitting of

putative loci, and (b) artifactual SNPs resulting from mapping errors

or failure to identify PCR error or sequencing error.

3.1 | Clustering error

One of the main advantages of RADseq methods is the fact that loci

can be assembled de novo, that is without a draft genome. The criti-

cal step in generating markers that accurately represent these loci is

the clustering of sequences into contigs that each represent a single

locus (Ilut et al., 2014). Several pipelines for marker reconstruction

exist, including Stacks (Catchen, Hohenlohe, Bassham, Amores, &

Cresko, 2013), PyRAD (Eaton, 2014), dDocent (Puritz, et al., 2014;

Puritz, Matz, et al., 2014) and AftrRAD (Sovic, Fries, & Gibbs, 2015),

each of which differs slightly in the strategies and methods

employed. While the algorithmic details of each pipeline are differ-

ent, they all make the assignment of putative homology (orthology)

of fragments based on the number of mismatches or percentage

similarity. Efficacy of this technique requires that the maximum

divergence among alleles at a given locus is smaller than the mini-

mum divergence among loci (Ilut et al., 2014). Undersplitting occurs

when sequence similarity thresholds are too low such that multiple

loci are combined into a single cluster forming multilocus contigs.

The formation of multilocus contigs will occur more frequently with

paralogs, repetitive elements and otherwise superficially similar

sequences in the genome. These multilocus contigs can inflate the

mean estimated heterozygosity. Conversely oversplitting occurs

when sequence similarity thresholds are too high, causing alleles of

the same locus to be split into two or more contigs. Oversplitting

results in deflation of mean estimated heterozygosity. Picking simi-

larity thresholds that result in no over‐ or undersplitting is not possi-

ble because every genome contains elements that will suffer over‐
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or undersplitting at every threshold selected (Ilut et al., 2014). How-

ever, it is generally better to err on the side of undersplitting,

because methods to identify and remove multilocus contigs are more

effective than those for identifying oversplit loci (Ilut et al., 2014;

Mastretta‐Yanes et al., 2015; Willis, Hollenbeck, Puritz, Gold, & Port-

noy, 2017). In addition, understanding differences between bioinfor-

matic pipelines is critical to properly clustering the data. For

example, Puritz et al. (in prep) found that rates of oversplitting vary

between dDocent, PyRAD, Stacks and AftrRAD across various combi-

nations of parameters. Because effective thresholds for clustering

will depend on the bioinformatic pipeline and vary by organism,

enzyme and data set, researchers should test parameters to identify

values where oversplitting is minimized.

3.2 | Artifactual SNPs

Artifactual SNPs, those that do not exist in the actual genome but

are called from mapped reads, may be the result of erroneous read

clustering/mapping, PCR error and/or sequencing error. Because the

rate of sequencing error varies by platform employed, chemistry and

read length, the typical user cannot control all error introduced at

this stage; therefore, it is important to account for sequencing error

during bioinformatic analysis. FASTQ format sequence reads include

Phred scale quality scores that indicate the probability of a base call

being correct. The quality score, Q, equals −10 log10 P, with P being

the probability of a base‐calling error; for example, Q = 30 corre-

sponds to the expectation that 1 in 1000 base calls will be incorrect,

that is the probability of a correct base call is 99.9%. Quality scores

can be used during bioinformatic processing to trim low‐quality sec-

tions from the beginnings and/or ends of reads or to eliminate reads

entirely; failure to do so can affect mapping quality downstream

and/or introduce artifactual SNPs. In the same way, library effects

may be introduced at this stage if sequence data are not carefully

assessed for quality (especially at the 3′ and 5′ ends) and properly

trimmed. A Phred‐like quality score is also used by several variant

callers, including FreeBayes and GATK (Depristo et al., 2011;

Garrison & Marth, 2012), to determine the probability of a SNP call

being real or artifactual.

4 | FILTERING SNP DATA

Despite attempts to limit the introduction of technical artefacts dur-

ing library preparation and bioinformatic processing, SNP data sets

require rigorous filtering because the inclusion of only a few incor-

rectly genotyped loci in a data set can create a significant, misleading

signal (Davey et al., 2013; Li & Wren, 2014; Meirmans, 2015; Puritz,

et al., 2014; Puritz, Matz, et al., 2014). This is especially important

for Fst‐outlier detection to determine loci potentially under selection

because signal caused by genotyping error is likely to stand out in

pattern and magnitude from the signal produced by the background

SNP data (Hendricks et al., 2018; Xue et al., 2009). Full postprocess-

ing exploration of each data set should include an evaluation of the

quality of each locus and individual, the confidence in both SNP calls

and genotypes, and whether specific loci are likely to be multilocus

contigs. This should involve generating frequency distributions of

parameters including missing data per locus and individuals, read

depth and heterozygosity to determine appropriate threshold values

for these parameters. In addition, the comparison of multiple filtered

data sets generated using different parameter values provides guid-

ance for which combinations of thresholds retain the most loci while

minimizing artefacts.

Beyond identifying parameters and threshold values that best

identify and remove specific types of artefacts, other important con-

siderations include the order in which filters are applied, whether

individual genotypes should be selectively coded as missing (e.g., due

to insufficient coverage) or entire loci removed, whether specific

SNPs or entire SNP‐containing contigs should be removed, and

whether threshold values should be applied across the entire data

set or separately across biologically meaningful groups, for example

geographic sampling locations or, to mitigate library effects, sepa-

rately across individuals grouped, for example, by library/sequencing

F IGURE 1 Library effects (adapted
from Puritz et al., 2015). PCA of RAD data
set combining four libraries (yellow
squares, red diamonds, blue triangles and
green circles) before (a) and after (b)
correcting for library effects by removing
affected markers
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lane. In addition, every data set will be unique in terms of the num-

ber and quality of samples/sequencing runs, and differences in the

protocols employed (e.g., enzyme combinations, targeted coverage)

and this means that individual data sets will differ in terms of miss-

ing data, coverage, etc. Therefore, while certain parameters should

always be considered during filtering, the exact steps employed and

the applied thresholds will be specific to each data set.

To illustrate the effects of various filtering strategies and param-

eter thresholds, we employed six different filtering schemes (FS)

across four different data sets (Hollenbeck, 2016; O'Leary, Hollen-

beck, Vega, Gold, & Portnoy, 2018; Portnoy et al., 2015; Puritz,

Gold, & Portnoy, 2016). All data sets were created using the dDocent

pipeline and differ in terms of the focal organism, type of reference

used to map reads, the type of reads and the number of libraries

sequenced (Supporting information Table S1). The red snapper data

set (Puritz et al., 2016) consists of previously published data that

have been recalled against a fully sequenced draft genome consisting

of large contigs (154,064 contigs; N50 = 233,156 bp; total length

1.23 Gb), while the other three were assembled de novo as previ-

ously published. For all FS, we first filtered genotypes, loci and indi-

viduals. Then, because most researchers analyse data sets of biallelic

SNPs, as a final step we decomposed multinucleotide variants and

retained only SNPs. Details of full FS are available in Table 2, and

fully annotated scripts for filtering are available at https://github.c

om/sjoleary/SNPFILT. The results of these FS are discussed in the

following sections to illustrate suggested filters.

4.1 | Low‐quality loci versus low‐quality individuals

Filtering parameters used to identify loci and individuals that did not

sequence well include genotype call rate per locus (i.e., proportion of

individuals a locus is called in) and missing data per individual, as

well as genotype depth and the mean depth per locus, that is mean

number of reads at a given locus across individuals. For data sets

characterized by high levels of missing data (e.g., red snapper, Fig-

ure 2), applying hard thresholds can result in retaining little to no loci

in the filtered data set. For example, for the red snapper data set,

setting hard cut‐offs retaining only loci with genotype call rates

>95% and individuals with <25% missing data leads to a final data

set of only 10 SNPs on three contigs in 262 individuals (raw data

set contains 1,106,387 SNPs on 25,168 contigs for 282 individuals,

Table 3).

As an alternative strategy, starting with low cut‐off values for

missing data (applied separately per locus and individual) and itera-

tively and alternately increasing them may result in more high‐quality
loci and individuals being retained. For example, in the red snapper

data set, first removing low‐confidence genotypes by filtering for

minimum genotype read depth >5, SNP quality score >20, minor

allele count >3 and minimum mean read depth per locus >15

changes the distribution of missing data per locus and individual and

decreases the mean missing data from approximately 75% to 35%

(Compare Figure 2a, b with c, d). Then, iteratively increasing the

stringency of allowed missing data (final threshold values of a 95%

TABLE 2 Detailed description of six different filtering schemes applied to example data sets, and the order of the rows indicates the order
in which filters are applied. Applied filters are designed to remove loci with low‐confidence SNP calls (minimum genotype read depth (minDP),
SNP quality score (Qual), mean read depth per locus across all individuals (meanDP), minor allele count (mac), missing data (allowed missing
data per individual (imiss), genotype call rate (number of individuals that have been called for a given locus (geno)) and INFO filters as
described in the manuscript

Filter FS 1 FS 2 FS 3 FS 4 FS 5 FS 6

Low‐confidence SNP calls minDP > 5 minDP > 5 minDP > 5 minDP > 5

Qual > 20 Qual > 20 Qual > 20 Qual > 20

meanDP > 15 meanDP > 15 meanDP > 15 meanDP > 15

mac < 3 mac < 3 mac < 3

Missing data geno > 50% geno > 50% geno > 50%

imiss < 90% imiss < 90% imiss < 90%

geno > 60% geno > 60% geno > 60%

imiss < 70% imiss < 70% imiss < 70%

geno > 70% geno > 70% geno > 70%

imiss < 50% imiss < 50% imiss < 50%

INFO filters Allele balance Allele balance

Quality/depth ratio Quality/depth ratio

Mapping quality ratio Mapping quality ratio

Strandedness Strandedness

Properly paired status Properly paired status

High depth/quality ratio High depth/quality ratio

Missing data geno > 95% imiss < 25% geno > 95% imiss > 25% imiss > 25% imiss > 25%

imiss < 25% geno > 95% imiss < 25% geno < 95% geno < 95% geno < 95%
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genotype call rate and 25% allowed missing data per individual)

results in 9,478–12,056 SNPs on 1,626–1,680 contigs and 187–189
individuals being retained (Table 3), depending on the FS outlined in

Table 2. This occurs because poor‐quality individuals tend to deflate

genotype call rates in otherwise acceptable loci, and poor‐quality loci

increase missing data in otherwise acceptable individuals. Applying

an iterative filtering strategy consistently results in more loci and

individuals being retained overall, even in data sets consisting of

individuals sequenced on a single sequencing lane for which the ini-

tial distributions of missing data per locus and individuals are more

favourable (Figure 3). For example, after removing low‐confidence
loci from the flounder data set as described above and then setting

a hard cut‐off for a genotype call rate of >95% and allowed missing

data per individual of <25% result in a data set consisting of 15,682

SNPs on 3,802 contigs over 170 individuals, while iterative filtering

results in data sets consisting of 18,663–24,103 SNPs on 4,789–
5,341 contigs over 164–167 individuals (Table 3).

4.2 | Confidence in SNP identification

The ability to filter loci depends on the pipeline used to reconstruct

and genotype loci and the set of parameters reported. As previously

mentioned, variant callers such as FreeBayes report Phred‐like qual-

ity scores for variants (SNPs) indicating the confidence in the SNP

call being correct. In the same way, users can set a minimum geno-

type depth below which genotypes are coded as missing to deter-

mine the minimum number of reads that need to be present at each

locus to be confident that false homozygotes are excluded from the

data (for further discussion, see Section 4.3).

Further, users often choose to set a minor allele count to remove

potentially artifactual SNP calls. For example, a minor allele count of

three requires an allele to be observed in at least two individuals

(homozygote and heterozygote). It is common practice to assume

that loci with a minor allele frequency < 5% are not informative at a

population level and to remove them from data sets. It is unfortu-

nate that this strategy will remove true rare alleles from data sets

that could be informative in understanding fine‐scale patterns of

connectivity and local adaptation. Because minor and private alleles

can be vital to accurately drawing inferences about past demo-

graphic events (e.g., genetic bottlenecks), elucidating fine‐scale popu-

lation structure, understanding patterns of local adaptation and

analysing shifts in frequency spectra (Cubry, Vigouroux, & François,

2017; O'Connor et al., 2015; Slatkin, 1985), being able to distinguish

between true minor alleles and genotyping error would allow for

better analysis of data sets. Carefully applying the filters as discussed

in this section can allow users to make this distinction, as illustrated

by comparing the difference between data sets created using speci-

fic filters before and after applying a minor allele count threshold.

4.3 | Confidence in genotypes: allele dropout/
coverage effects

While artifactual SNPs as described above will result in genotyping

error (individuals called heterozygous for alleles that do not exist),

genotyping error at real SNPs may also occur. Allele dropout and

coverage effects can lead to unsampled alleles and individuals incor-

rectly genotyped as homozygotes. Whereas coverage effects can be

technically mitigated by setting a target number of reads per individ-

ual, per locus based on the total number of reads expected on each

sequencing lane and the number of fragments excepted, allele drop-

out is an unavoidable artefact of using restriction enzymes and size

selection during library preparation. For targeted fragments to be

amplified and sequenced, adapters must be correctly ligated to the

“sticky” ends left by the enzymes, but polymorphisms may occur in

the enzyme recognition site (cut‐site polymorphisms) resulting in

alleles that are not cut by the restriction enzymes. In the same way,

F IGURE 2 Missing data per locus and
individual (indv), respectively, for unfiltered
red snapper data set (a, b) and after coding
genotypes with <5 reads as missing and
removing low‐quality loci with SNP quality
score <20 and minimum mean depth <15
reads (c, d). Red dashed line indicates
mean proportion of missing data
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length polymorphisms (insertion–deletions, “indels”) may result in

allele dropout when alleles fall outside the selected size window. In

either case, the result is allele‐specific sequencing failure.

Allele dropout cannot be avoided by optimizing standard labora-

tory procedures, but can be accounted for during filtering by remov-

ing genotypes below a certain threshold of minimum reads and by

identifying loci with high variance in read depth among individuals

(Cooke et al., 2016; Davey et al., 2013). Low coverage can result in

false homozygotes because the number of reads may not be high

enough to successfully call both alleles. Loci can be filtered based on

a threshold of minimum mean depth per locus and users can code

individuals’ genotypes at specific loci as missing if they fall below a

minimum depth threshold that reflects the number of reads required

to confidently call homozygotes. This increases the confidence in

individual genotypes and results in the removal of loci that consis-

tently have genotypes not called with high confidence across individ-

uals. It is unfortunate that, during filtering, it is difficult to distinguish

between allele dropout and coverage effects because they create

similar patterns of missing data, variance in depth and excess

homozygosity. In both cases, failure to remove potentially affected

loci causes the introduction of false homozygotes and may result in

biased estimates of population genetic parameters based on allele

frequencies and heterozygosity (DaCosta & Sorenson, 2014; Gautier

et al., 2012), although the magnitude of this bias will vary depending

on the magnitude of the true biological signal in the data.

Hence, it is important to consider the statistical model being

used for variant calling and how the model relates to read depth.

For example, FreeBayes and GATK (Depristo et al., 2011; Garrison &

Marth, 2012) are Bayesian callers that integrate data across all sam-

ples when determining genotypes, meaning lower read depth geno-

types can be called with greater accuracy. This is in contrast to

genotyping models implemented in STACKS or PyRAD (Catchen,

Amores, Hohenlohe, Cresko, & Postlethwait, 2011; Eaton, 2014),

which genotype individuals one at a time without the ability to inte-

grate data across samples until genotyping is completed. Finally,

when deviations from Hardy–Weinberg proportions are not

expected, chi‐square tests of Hardy–Weinberg expectations for indi-

vidual loci within demes can also indicate heterozygote deficits that

may indicate allele dropout.

4.4 | Identification of multilocus contigs

Multilocus contigs can be identified by assessing distributions of

read depth, excess heterozygosity and the number of haplotypes

observed per each individual at each marker (Ilut et al., 2014; Li &

Wren, 2014; Willis et al., 2017). In general, total or mean read depth

per locus should be approximately normally distributed. Loci with

coverage falling well above this distribution may be reads clustered

or mapped from multiple loci. Loci with excess coverage are best

identified by generating a frequency distribution of coverage and

choosing thresholds, for example two times the mode (Willis et al.,

2017) or the 90th quantile (https://github.com/jpuritz/dDocent/

blob/master/scripts/dDocent_filters; Figure 4). AppropriateT
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thresholds will vary between data sets and species. Because fixed or

near‐fixed differences may exist between nonorthologous loci, multi-

locus contigs often have an excess number of heterozygotes

(Hohenlohe, Amish, Catchen, Allendorf, & Luikart, 2011; Willis et al.,

2017). VCFtools (Danecek et al., 2011) provide a statistical frame-

work for assessing heterozygote excess via a chi‐square test of

Hardy–Weinberg expectations for VCF files. Finally, reads in multilo-

cus contigs often exhibit more than two haplotypes per individual,

and therefore, loci can be removed based on a threshold for the

number of individuals with excess haplotypes (Ilut et al., 2014; Willis

et al., 2017). While each of these filters applied alone may catch

many or even the majority of multilocus contigs, the most effective

strategy to remove multilocus contigs appears to be applying each

filter in parallel and removing markers flagged by any of the three fil-

ters (Willis et al., 2017).

4.5 | INFO‐flag filtering of vcf files

FreeBayes and other multisample variant callers create annotated

output files (VCF files) containing additional data pertaining to indi-

vidual SNPs, coded as “INFO” flags. Using utilities such as VCFtools

(Danecek et al., 2011), the suite of tools from vcflib (https://github.c

om/vcflib/vcflib), and simple PERL and BASH scripting, it is possible

to create custom filters based on these flags. Li and Wren (2014)

investigated false heterozygote calls on a SNP data set generated

from a haploid genome and estimated that the raw data set con-

tained one erroneous call in 10–15 kb. After implementing a set of

filters based on the INFO flags, the genotyping error rate was

reduced to one in 10–200 kb. The INFO flag filters include allele bal-

ance, mapping quality ratio, reads mapped as proper pairs, strand

bias and the relationship of read depth to quality score.

Allele balance (AB) compares the number of reads for the refer-

ence allele to the number of reads for the alternate allele across

heterozygotes. The expected allele balance is 0.5; large deviations

may indicate false heterozygotes due to coverage effects, multilocus

contigs or other artefacts. Figure 5 shows AB for a raw data set and

for data sets that have been filtered for low‐quality genotypes, loci

and individuals. In both unfiltered and filtered data sets, loci with

high/low AB are present, indicating that problematic loci will remain

unless AB is explicitly filtered for.

F IGURE 3 Missing data per locus and
individual, respectively, for unfiltered
southern flounder data set (a, b) and after
coding genotypes with <5 reads as missing
and removing low‐quality loci with SNP
quality score <20 and minimum mean
depth <15 reads (c, d). Red dashed line
indicates mean proportion of missing data

F IGURE 4 Distribution of mean depth per locus across all loci for
red snapper data set after removing low‐confidence/low‐quality loci
(minimum genotype depth >3, SNP quality score >20, minor allele
count >3, mean minimum depth across all individuals >15) and
iterative filtering of missing data to final threshold of genotype call
rate >95% and allowed missing data per individual <25%. Blue
dotted line indicates 95% percentile (123.5) and red dashed line 2×
the mode (156) as potential cut‐offs to remove loci with excessively
high depth indicative of multilocus contigs following Willis et al.
(2017)
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F IGURE 5 Allele balance in
heterozygous genotypes (proportion of
reads corresponding to the reference
allele) for (a) unfiltered red drum data set,
(b) data set with genotype read depths <3
reads coded as missing and loci with SNP
quality score <20, mean depth <15 reads
and/or >30% missing data removed, and (c)
data set filtered as (b) and loci with a
minor allele count <3 removed in addition.
Except for minor sampling error, reference
and alternate allele should be supported by
the same number of reads, that is allele
balance should be 0.5 (red dashed line);
values away from this indicate potential
anomalies. The blue dotted lines indicate
default cut‐off values of 0.2 and 0.8
implemented in dDocent_filters (https://
github.com/jpuritz/dDocent/blob/master/
scripts/dDocent_filters)
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Reads supporting either allele in a heterozygote should have

similar mapping quality values; the ratio of mapping quality

between alleles therefore should be approximately one. The map-

ping quality of a read is the probability of a given read mapping

similarly well to another location in the reference; reads stemming

from paralogous or multicopy loci should therefore have reduced

mapping quality, as they will map similarly well to multiple

locations in the reference. Hence, systematically large discrepan-

cies between the mapping quality for reads supporting the refer-

ence and alternate alleles at a SNP may be indicative of read

mapping errors, due to repetitive elements, paralogs or multilocus

contigs. Users should remove loci where reads supporting the

alternative allele have a substantially lower mapping quality com-

pared to reads supporting the reference allele. For example,

dDocent_filters (https://github.com/jpuritz/dDocent/blob/master/sc

ripts/dDocent_filters), a companion script to the dDocent pipeline,

suggests a lower threshold of 0.25 (Figure 6). In the same way,

reads supporting the reference allele are expected to have high

mapping quality scores, thus limiting how much higher the map-

ping quality of reads supporting the alternative allele can become.

Therefore, high ratios only occur when mapping quality of reads

supporting the reference allele are low, resulting in a need for an

upper threshold value (default 1.75 for dDocent_filters; Figure 6).

Users are encouraged to assess their data sets to identify appro-

priate cut‐offs. Standard filtering steps do not remove all loci with

biased mapping quality ratios (Figure 6). As mentioned in Sec-

tion 4.2, assessing mapping quality ratios has the added benefit

that it can help to identify minor alleles that are not true alleles

(Figure 6b), allowing researchers to retain true minor alleles that

may contain an important biological signal.

For paired‐end libraries, artefacts can also be identified by exam-

ining the properly paired status of reads and potential strand bias.

The forward and reverse reads of a known pair should always map

to the same contig; improper read pairing, in which forward and

reverse reads of a known pair map to different contigs, indicates

mapping anomalies such as multicopy or improperly assembled loci.

Strand bias describes the relationship between forward and reverse

reads and SNP calls at a given locus. For most paired‐end RADseq

libraries, the forward and reverse reads do not overlap because the

actual RAD fragments will be too long. For example, a 350‐bp RAD

fragment characterized with 125 bp pair‐end reads will have 100 bp

of uncharacterized, intervening sequence. Therefore, a given SNP

should only be apparent on either the forward or reverse read. Calls

of the same SNP in both forward and reverse reads often indicate

mapping anomalies. However, the implications of this criterion

depend on read length and fragment length and therefore the

expected overlap of paired reads in a given data set.

At last, the relationship between SNP quality score and read

depth should be assessed; these measures should be positively cor-

related, because, theoretically, increasing read depth should decrease

the likelihood of false homozygous calls (Li & Wren, 2014). Users

may choose to apply a general threshold value for the ratio of locus

quality to read depth and/or apply a separate SNP quality score

threshold value for loci with high read depth. For example, dDocent_

filters (https://github.com/jpuritz/dDocent/blob/master/scripts/

dDocent_filters), a companion script to the dDocent pipeline, imple-

ments this by considering SNPs with a depth > mean + 1 standard

deviation as high coverage and then removing high coverage SNPs

for which the quality score is less than two times the read depth

(Figure 7, Li & Wren, 2014).

F IGURE 6 Ratio of mean mapping quality scores for the
reference and alternate allele for southern flounder data set. (a)
Genotypes with <5 reads have been coded as missing and loci with
SNP quality score <20, mean read depth <15 reads, >30% missing
data and/or and minor allele count of <3 removed; (b) same data set
without applying minor allele count filter. Red dashed line indicates
loci with mapping quality ratio of 1, that is the further away the
larger the discrepancy between the mapping quality of the reference
and alternate allele. Blue dashed lines indicate cut‐off values for the
ratio of mean mapping quality score of 0.25 and 1.75 (alternate to
reference allele) as implemented in dDocent_filters (https://github.c
om/jpuritz/dDocent/blob/master/scripts/dDocent_filters) to remove
loci with high discrepancy of mapping quality for the alleles of a
given locus (indicated in red below the dashed line)
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5 | PHYSICAL LINKAGE

After filtering, most RADseq data sets will generally contain sets of

SNPs located on the same contig. SNPs located within a few hundred

base pairs of each other are generally physically linked (Hohenlohe,

Bassham, Currey, & Cresko, 2012; Miyashita & Langley, 1988),

whereas most commonly used analyses assume that all genetic mark-

ers are independent. Due to the fact that RAD methods randomly

sample the genome; it is possible that selected fragments are linked as

well and users should, where appropriate, test for linkage disequilib-

rium between loci to avoid biasing results. Treating physically linked

SNPs as independent markers provides biased results, including false

signals of population structure. A common method to remove this bias

is to retain only one SNP from each contig (“thinning”). This is an

appropriate strategy but one that reduces the information content of a

given marker if multiple SNPs are contained on a single contig.

Another way to deal with physical linkage is to infer haplotypes for

each contig based on the combination of filtered SNPs within paired

reads (Willis et al., 2017). This strategy will produce the same number

of markers as thinning, but many markers will be multiallelic; therefore,

haplotyping manages physical linkage while preserving the total infor-

mation content of the data set.

6 | CONCLUSIONS & OUTLOOK (ON THE
IMPORTANCE OF REPRODUCIBLE
RESEARCH)

With the shift from data sets consisting of markers for tens to hundreds

of microsatellite loci to several thousand SNP‐containing loci, bioinfor-

matic processing has become the only viable means of ensuring data

quality. If careful quality control is implemented, RAD methods are a

powerful instrument in the molecular ecologist's toolbox to assess levels

of population structure, connectivity and local adaptation in nonmodel

species for which genomic resources might not yet be available. Many

studies currently report very few details pertaining to quality control

methods applied to the output from SNP calling pipelines beyond very

basic filtering, frequently limited to the removal of markers and/or

individuals with low coverage or high levels of missing data. Enabling

this under‐reporting is a lack of clear quality control standards. Never-

theless, it is incumbent upon the authors to document data preparation

and quality control steps and make these available to the scientific com-

munity along with raw data sets to ensure that data analyses are trans-

parent and fully reproducible (Leek & Peng, 2015; Peng, 2014).

Here, we have provided a discussion of several of the places that

errors and artefacts may be introduced into RADseq datasets and

provided recommendations for how to minimize, detect and account

for these artefacts from the laboratory through bioinformatic and fil-

tering stages. We hope that these recommendations facilitate discus-

sion on standardization of quality control in RAD‐based population

genomic data sets. While a detailed description of each filtering step

would exhaust available space for Methods section of a manuscript,

researchers should include detailed procedures in the supplementary

material and deposit custom scripts in public data or code reposito-

ries (e.g., O'Leary et al., 2018; Portnoy et al., 2015; Puritz et al.,

2016). Further, platforms such as GitHub (http://github.com) allow

for convenient archiving as well as assigning DOIs (digital object

identifiers) to make code citable. A description of processing should

accompany data sets archived in readily interpretable formats, along

with the associated metadata, and consist of the tools (name and

version) and exact parameters used for processing. In addition to

making data analysis fully transparent and reproducible, this will

allow developed approaches to be applied to other data sets and

facilitate the development of new and better approaches in the

application of genomics to molecular ecology.
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